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Abstract
The 3 × 3 matrix Riemann–Hilbert problem for bi-orthogonal polynomials
with the third-degree polynomial potential functions is explicitly constructed.
The developed approach can be extended to bi-orthogonal polynomials with
arbitrary polynomial potentials.
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1. Introduction

The classical asymptotic theory of orthogonal polynomials [1, 2] extended to polynomials
orthogonal with respect to the weight exp(−NV (z)) [3–6] has gained essential progress after
introduction of the Riemann–Hilbert (RH) problem approach [7] and the steepest descent
method [8]. A particular implementation of these methods to the orthogonal polynomials on
the real line can by found in [9, 10] while orthogonal polynomials on the circle are studied
in [11].

Further extensions of the notion of orthogonal polynomials motivated by a number of
applications to the random matrix theory, integrable systems, approximation theory and
combinatorics include generalized orthogonal polynomials and bi-orthogonal polynomials.
In the former case, the sequence of polynomials is orthogonal with respect to a sequence of
measures [12, 13]∫

R

Pn(λ) dρm(λ) = δnm

while in the latter case, two sequences of polynomials are orthogonal to each other with respect
to a two-dimensional measure [14–16],∫

R

∫
R

Pn(λ)Qm(ξ) dµ(λ, ξ) = δnm.
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In the simplest case, the two-dimensional measure has the form of the product dµ(λ, ξ) =
exp(−V (λ)−W(ξ) + λξ) dλ dξ where the polynomials V (λ) andW(ξ) are called potentials.
Integration over ξ in the latter two-fold integral yields the sequence of measures, dρm(λ) =
φ̂m(λ) dλ = ∫

R
Qm(ξ) dµ(λ, ξ). The functions φ̂m(λ) here are called dual functions [15].

Generalized and bi-orthogonal polynomials are associated with a completely integrable
system coming from t-deformations and Virasoro constraints and typically describing certain
reductions of the 2-Toda lattice [12–16]. However, although the algebraic properties of
the generalized and bi-orthogonal polynomials are extensively studied, knowledge of the
asymptotic properties of such polynomials is limited. Basically, this is due to the absence of
an adequate formulation of the relevant RH problem. Indeed, even though the 2 × 2 matrix
RH problem formulation for the conventional orthogonal polynomials [7] admits a direct 2×2
extension to the case of generalized orthogonal polynomials [12], the relevant version for
bi-orthogonal polynomials [14] exhibits its non-local nature.

Fortunately, recent study reveals the isomonodromy structure associated with bi-
orthogonal polynomials and hence the principal possibility of formulating an n × n matrix
RH problem which would have properties similar to those for the 2 × 2 matrix RH problem
for conventional orthogonal polynomials [15]. In what follows, assuming the existence of bi-
orthogonal polynomials for the third-degree polynomial potentials, we construct the relevant
3 × 3 matrix RH problem, as well as the 3 × 3 RH problem for the dual functions. In spite of
its less physical importance, this case provides us the opportunity to develop the technique in
the simplest non-trivial case. (The bi-orthogonal polynomials for the second-degree potentials
are reduced to classical Hermite polynomials [14]. In some more involved cases such as
degV (λ) > 2, degW(ξ) = 2, the bi-orthogonal polynomials can be expressed in terms of
semi-classical orthogonal polynomials related to the 2 × 2 matrix RH problem studied in
[7, 9–11] and other papers.

We stress that the method explained below can be extended to arbitrary polynomial
potentials. We also point out a particular importance of the paper [17] which is useful for the
construction and justification of the RH problem for the dual functions in the class of weights
with rational log derivatives.

After the original version of the present paper was posted on the Internet [18], the Montreal
group presented their methodology for constructing a similar RH problem [19]. Their idea for
evaluation of the RH problem for the dual functions based on the study of path integrals concurs
with ours but, in contrast to our cubic case, they consider arbitrary polynomial potentials. As
for the RH problem for the original (wave) function, the authors of [19] rely on the so-called
duality pairing, while our approach is based on the explicit integral representation of the
wavefunction.

This paper is organized as follows. In section 2, we recall the matrix differential and
difference equations satisfied by the bi-orthogonal polynomials and their dual functions. In
section 3, we construct fundamental solutions for the differential–difference system for the
dual functions which gives rise to the RH problem (equations (22)–(24)) for the dual functions.
In section 4, we construct fundamental solutions of the differential–difference system for the
bi-orthogonal polynomials and the relevant RH problem (equations (37)–(39)). In section 5,
we discuss some properties and implications of the constructed RH problems.

2. Equations for the bi-orthogonal polynomials

Below, we consider monic polynomials pn(λ), qm(ξ) satisfying the orthogonality condition∫
γ1

dλ
∫
γ2

dξpn(λ)qm(ξ) exp(−V (λ)−W(ξ) + tλξ) = h2
nδn,m (1)
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where

V (λ) = 1
3λ

3 + xλ W(ξ) = 1
3 ξ

3 + yξ

x, y, t ∈ C, t �= 0; the contours γi, i = 1, 2, are the complex linear combinations of the
elementary contours,

γi =
2∑
j=0

g
(i)
j �j g

(i)
j ∈ C i = 1, 2 (2)

where each �j is the sum of two rays

�j = (
exp

(
i 2π

3 (j − 2)
)∞, 0

] ∪ [
0, exp

(
i 2π

3 (j − 1)
)∞)

j = 0, 1, 2. (3)

Because �0 + �1 + �2 = 0, one of the parameters, g(1)j (respectively g(2)j ), can be put to

zero and one of the nontrivial parameters, g(i)j , can be normalized to unity. Thus the set of
contours γj and, therefore, the set of monic bi-orthogonal polynomials are parametrized by
three constant complex parameters. (More general parametrization of the set of contours is
introduced in [19]; however, in our cubic case, both kinds of parametrization are equivalent.
We also note that the general cubic potentials can be reduced to the above form using the linear
transformations in λ and ξ .)

We introduce the wavefunctions

ψn(λ) = 1

hn
pn(λ) exp(−V (λ)) φm(ξ) = 1

hm
qm(ξ) exp(−W(ξ)) (4)

and their Fourier–Laplace images ψ̂n(ξ), φ̂m(λ) called the dual functions [15],

ψ̂n(ξ) =
∫
γ1

ψn(λ) exp(tλξ) dλ φ̂m(λ) =
∫
γ2

φm(ξ) exp(tλξ) dξ. (5)

The orthogonality condition (1) now reads∫
γ1

dλ
∫
γ2

dξψn(λ)φm(ξ) exp(tλξ) =
∫
γ1

ψn(λ)φ̂m(λ) dλ =
∫
γ2

ψ̂n(ξ)φm(ξ) dξ = δnm. (6)

It implies certain relations between the introduced functions (4) and (5). We refer to [15] for
the general case and present the final result for our particular situation here:

λψn(λ) =
n+1∑

m=n−2

an,mψm(λ) ∂λψn(λ) = −t
n+2∑

m=n−1

bn,mψm(λ)

∂xψn(λ) =
n+1∑
m=n

un,mψm(λ) ∂yψn(λ) = −
n∑

m=n−1

vn,mψm(λ) (7)

∂tψn(λ) = wnψn(λ)−
n−1∑

m=n−3

An,mψm(λ)

ξφm(ξ) =
m+1∑

n=m−2

bn,mφn(ξ) ∂ξφm(ξ) = −t
m+2∑

n=m−1

an,mφn(ξ)

∂yφm(ξ) =
m+1∑
n=m

vn,mφn(ξ) ∂xφm(ξ) = −
m∑

n=m−1

un,mφn(ξ) (8)

∂tφm(ξ) = wmφm(ξ)−
m−1∑
n=m−3

An,mφn(ξ)

where the coefficients an,m, bn,m, un,m, vn,m,An,m are described in more detail in [18].
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Using definition (5) and the equations given above, it is straightforward that the dual
functions satisfy equations

∂ξ ψ̂n(ξ) =
n+1∑

m=n−2

tan,mψ̂m(ξ) ξψ̂n(ξ) =
n+2∑

m=n−1

bn,mψ̂m(ξ)

∂xψ̂n(ξ) =
n+1∑
m=n

un,mψ̂m(ξ) ∂yψ̂n(ξ) = −
n∑

m=n−1

vn,mψ̂m(ξ) (9)

∂t ψ̂n(ξ) = −wnψ̂n(ξ) +
n+3∑

m=n+1

An,mψ̂m(ξ)

∂λφ̂m(λ) =
m+1∑

n=m−2

tbn,mφ̂n(λ) λφ̂m(λ) =
m+2∑

n=m−1

an,mφ̂n(λ)

∂yφ̂m(λ) =
m+1∑
n=m

vn,mφ̂n(λ) ∂xφ̂m(λ) = −
m∑

n=m−1

un,mφ̂n(λ) (10)

∂t φ̂m(λ) = −wmφ̂m(λ) +
m+3∑
n=m+1

An,mφ̂n(λ).

Using the above equations, 3-vectors �n(λ) = (ψn(λ), ψn−1(λ), ψn−2(λ))
T , �m(ξ) =

(φm(ξ), φm−1(ξ), φm−2(ξ))
T , and dual vectors ψ̂n(ξ) = (ψ̂n(ξ), ψ̂n−1(ξ), ψ̂n−2(ξ))

T ,
φ̂m(λ) = (φ̂m(λ), φ̂m−1(λ), φ̂m−2(λ))

T satisfy the following systems of difference and
differential equations with 3 × 3 matrix coefficients [15],

�n+1(λ) = Rn(λ)�n(λ)
∂�n

∂λ
(λ) = An(λ)�n(λ)

(11)
∂�n

∂x
= Un(λ)�n

∂�n

∂y
= Vn(λ)�n

∂�n

∂t
= Wn(λ)�n

�m+1(ξ) = Qm(ξ)�m(ξ)
∂�m

∂ξ
(ξ) = Bm(ξ)�m(ξ)

(12)
∂�m

∂x
= Um�m

∂�m

∂y
= Vm�m

∂�m

∂t
= Wm�m

�̂n+1(ξ) = R̂n(ξ)�̂n(ξ)
∂�̂n

∂ξ
(ξ) = Ân(ξ)�̂n(ξ)

(13)
∂�̂n

∂x
(ξ) = Ûn(ξ)�̂n(ξ)

∂�̂n

∂y
(ξ) = V̂n(ξ)�̂n(ξ)

∂�̂n

∂t
(ξ) = Ŵn(ξ)�̂n(ξ)

�̂m+1(λ) = Q̂m(λ)�̂m(λ)
∂�̂m

∂λ
(λ) = B̂m(λ)�̂m(λ)

(14)
∂�̂m

∂x
(λ) = Ûm(λ)�̂m(λ)

∂�̂m

∂y
(λ) = V̂m(λ)�̂m(λ)

∂�̂m

∂t
(λ) = Ŵm(λ)�̂m(λ)

where the expressions for the 3 × 3 matrix coefficients are given in [18].
The compatibility conditions of the above equations yield a reduction of the 2-Toda lattice

[12]. On the other hand, this nonlinear system describes the isomonodromy deformations with
respect to the parameters x, y, t ∈ C and n,m ∈ N of the 3 × 3 matrix differential equations
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in λ and ξ . Below we show that by expanding the underlying idea of [7] it is possible to
construct fundamental solutions of systems (11)–(14) in terms of the (unknown) bi-orthogonal
polynomials using merely the fact of the existence of linear systems (11)–(14) rather than the
systems themselves.

3. Particular solutions of the matrix equations and the Riemann–Hilbert problem for
the dual functions

Because of the above-mentioned independence of the relevant monodromy data from the
deformation parameter t, without loss of generality, we restrict ourselves to t > 0. This
assumption allows us to simplify our calculations while the final result will be valid for
arbitrary t ∈ C\{0}. Below, we give the detailed derivation of the RH problem for the
dual functions ψ̂n(ξ), see (5), satisfying (9). Similar details for φ̂m(λ) satisfying (10) can
be found in [18] or easily reconstructed from those for ψ̂n(ξ) using substitutions ψ ↔ φ,
λ ↔ ξ, n ↔ m, x ↔ y, p ↔ q , γ1 ↔ γ2 and g(1)j ↔ g

(2)
j .

Let us introduce the auxiliary functions

ψ̂(j)
n (ξ) =

∫
�j

ψn(λ) exp(tλξ) dλ (15)

where the contours�j , j = 0, 1, 2, are defined in (3). Due to (5) and (2), the dual and auxiliary
functions are related by

ψ̂n(ξ) =
2∑
j=0

g
(1)
j ψ̂

(j)
n (ξ) (16)

and satisfy the same equations (9). Taking into account the orthogonality condition (6), we
find that the functions Fn(ξ),

Fn(ξ) = exp(W(ξ))

2π i

∫
γ2

�̂n(ζ ) exp(−W(ζ ))
ζ − ξ

dζ (17)

for n � 2 also satisfy (9).
Observing that ψ̂(j)

n , j = 1, 2, are combinations of the independent Airy functions and
their derivatives

ψ̂(j)
n (ξ) = 1

hn
pn(∂τ )

∫
�j

exp
(− 1

3λ
3 + τλ

)
dλ

∣∣∣∣∣
τ=tξ−x

(18)

we construct the fundamental piece-wise holomorphic solution of the system of the 3 × 3
matrix equations (13) and (14),

�̂n(ξ) =



ψ̂(1)
n (ξ) ψ̂(2)

n (ξ) Fn(ξ)

ψ̂
(1)
n−1(ξ) ψ̂

(2)
n−1(ξ) Fn−1(ξ)

ψ̂
(1)
n−2(ξ) ψ̂

(2)
n−2(ξ) Fn−2(ξ)


 n � 4. (19)

The jump property of the Cauchy integral yields the relations

F +
n (ξ)− F−

n (ξ) = (
g
(2)
j − g

(2)
j+1

)
ψ̂n(ξ) arg ξ = 2π

3
(j − 1) j = 0, 1, 2 (20)

where g(i)3 ≡ g
(i)
0 . Thus the matrix function �̂n(ξ) has the following jumps across the rays
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�j = {
ξ ∈ C: arg ξ = 2π

3 (j − 1)
}
, j = 0, 1, 2, oriented towards infinity

�̂+
n (ξ) = �̂−

n (ξ)




1 0
(
g
(2)
j − g

(2)
j+1

)(
g
(1)
1 − g

(1)
0

)
0 1

(
g
(2)
j − g

(2)
j+1

)(
g
(1)
2 − g

(1)
0

)
0 0 1


 ξ ∈ �j j = 0, 1, 2. (21)

Using the well-known asymptotics of the Airy integrals in the complex domain,∫
�0

exp
(− 1

3λ
3 + τλ

)
dλ = −i

√
πτ−1/4 exp

(− 2
3τ

3/2) (1 + O(τ−3/2)) arg τ ∈ (− 2π
3 ,

2π
3

)
∫
�1

exp
(− 1

3λ
3 + τλ

)
dλ = i

√
πτ−1/4 exp

(− 2
3τ

3/2)(1 + O(τ−3/2)) arg τ ∈ (
2π
3 , 2π

)
∫
�2

exp
(− 1

3λ
3 + τλ

)
dλ = −√

πτ−1/4 exp
(

2
3τ

3/2) (1 + O(τ−3/2)) arg τ ∈ (
0, 4π

3

)

the asymptotics of the Cauchy integrals for (17),

Fn(ξ) = − hn

2π i
ξ−n−1 exp(W(ξ))(1 + O(ξ−1))

which is obtained by applying the orthogonality condition (6), we construct the RH problem
for the dual functions ψ̂n(ξ).

Riemann–Hilbert problem 1. Find a piece-wise holomorphic 3 × 3 matrix function �̂RH
n (ξ)

with the following properties:

1. Ĝ−1(ξ)�̂RH
n (ξ) exp(−�̂(ξ)) → I as ξ → ∞ where

Ĝ(ξ) =




√
π

hn
(tξ)

1
4

√
π

hn
(−1)n(tξ)

1
4 − hn

2π iξ
−2

√
π

hn−1
(tξ)−

1
4

√
π

hn−1
(−1)n−1(tξ)−

1
4 − hn−1

2π i ξ
−1

√
π

hn−2
(tξ)−

3
4

√
π

hn−2
(−1)n−2(tξ)−

3
4 − hn−2

2π i




�̂(ξ) = diag
(

2
3 (tξ)

3/2 − x(tξ)1/2 + 1
2 (n− 1) ln(tξ)

− 2
3 (tξ)

3/2 + x(tξ)1/2 + 1
2 (n− 1) ln(tξ), 1

3ξ
3 + yξ − (n− 1) ln ξ

) ;

(22)

2. Across the rays arg ξ = 2π
3 (j − 1), j = 1, 2, 3, oriented towards infinity, �̂RH

n (ξ) has the
jumps

�̂RH+
n (ξ) = �̂RH−

n (ξ)Ŝj arg ξ = 2π
3 (j − 1) (23)

where plus and minus indicate the limiting values of �RH
n (ξ) on the jump contour from

the left and from the right, respectively, and

Ŝ1 =




1 0
(
g
(2)
1 − g

(2)
2

)(
g
(1)
1 − g

(1)
2

)
−i 1 i

(
g
(2)
1 − g

(2)
2

)(
g
(1)
2 − g

(1)
0

)
0 0 1




Ŝ2 =




1 −i
(
g
(2)
2 − g

(2)
0

)(
g
(1)
1 − g

(1)
2

)
0 1 i

(
g
(2)
2 − g

(2)
0

)(
g
(1)
1 − g

(1)
0

)
0 0 1




Ŝ3 =




1 0
(
g
(2)
0 − g

(2)
1

)(
g
(1)
0 − g

(1)
2

)
−i 1 i

(
g
(2)
0 − g

(2)
1

)(
g
(1)
1 − g

(1)
0

)
0 0 1


 .
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Across the ray arg ξ = −π
3 oriented towards infinity, the jump condition holds

�̂RH+
n (ξ) = �̂RH−

n (ξ)�̂ arg ξ = −π
3

�̂ =




0 i 0

i 0 0

0 0 1


 . (24)

The dual functions ψ̂n(ξ), ψ̂n−1(ξ) and ψ̂n−2(ξ) form the 3-vector �̂n(ξ) related to the
solution of RH problem 1 by the following equations:

�̂n(ξ) =




�̂RH
n (ξ)R(1) arg ξ ∈ (− π

3 , 0
)

�̂RH
n (ξ)Ŝ−1

1 R(1) arg ξ ∈ (
0, 2π

3

)
�̂RH
n (ξ)Ŝ−1

2 Ŝ−1
1 R(1) arg ξ ∈ (

2π
3 ,

4π
3

)
�̂RH
n (ξ)Ŝ−1

3 Ŝ−1
2 Ŝ−1

1 R(1) arg ξ ∈ (
4π
3 ,

5π
3

)
(25)

where the 3-vector R(1) = (
g
(1)
1 − g

(1)
2 , i

(
g
(1)
2 − g

(1)
0

)
, 0

)T
.

Remark 1. In the cubic case the general construction formulated in [19], yields mainly the
same RH problem modulo notations. In our terms, the authors of [19] study the matrix function


0 0 1

m11 m12 0

m21 m22 0


 �̂T

n+1




0 0 1

0 1 0

1 0 0




where mij are properly chosen constants. Under this modification, the jump condition for
�̂n+1 across the rays �j , which can be obtained from (21), turns into a jump condition (3.1.6)
of [19] across the linesLµ. Equation (3.2.20) of [19] describes the Stokes phenomenon for the
Fourier–Laplace transforms φ̂m which, in our cubic case, are linear combinations of the Airy
functions and their derivatives. It is interesting that, in the cubic case, the Stokes phenomenon
takes place for one half of the directions Rk described in the general construction of [19],
namely, the jumps across arg ξ = π

3 + 2π
3 (j − 1) are trivial. Furthermore, since the remaining

rays Rk coincide with the rays Lµ, the respective jump matrices, separately described in
[19], are replaced in (23) by their products Ŝj . The most significant difference between both
formulations is jump condition (24) which is absent in [19]. In our approach, it comes from
the RH problem for the Airy functions, see, e.g. [20], i.e. from the fact that the formal Airy
asymptotics z−1/4 exp

(
2
3z

3/2
)
, z−1/4 exp

(− 2
3z

3/2
)

are single-valued on the complex z-plane
cut along [0,∞). In our approach, the cyclic relation

Ŝ1Ŝ2Ŝ3�̂ = I (26)

whose validity can be checked by straightforward computation, ensures the continuity of the
RH problem at the origin and reflects the fact that all solutions of an ODE with polynomial
coefficients are entire functions. The absence of a similar jump in the construction of [19]
means that, implicitly, the authors of the mentioned paper formulate their RH problem on a
Riemann surface (four-sheeted in the cubic case) rather than on the plane.

4. Particular solutions of the matrix equations and the Riemann–Hilbert problem for
the wavefunctions

The method of construction of the Riemann–Hilbert problem for the wavefunctionsψn(λ) and
φm(ξ) is more involved because of the less elementary structure of their integral representations
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in comparison to those for dual functions. Below, we give the detailed derivation of the RH
problem for the ψn(λ). Similar details for φm(ξ) can be found in [18] or obtained from those
for ψn(λ) using substitutions ψ ↔ φ, λ ↔ ξ , n ↔ m, x ↔ y, and g(1)j ↔ g

(2)
j .

Let �̃(j)0 be an oriented contour connecting a finite point ξ0 with infinity within the sector
of the exponential decay of the function ψ̂(j)

n (ξ) (18). Namely, let �̃(j)0 be asymptotic to the
ray

�̃
(j)

0 ∼ [
0, exp

(−i 2π
3 j

)∞)
. (27)

Let �̃j be an infinite oriented contour asymptotic to the rays

�̃j ∼ (
exp

(
i 2π

3

(
j − 3

2

))∞, 0
] ∪ [

0, exp
(
i 2π

3

(
j − 1

2

))∞)
j = 0, 1, 2 (28)

located within the sector (28) and intersecting the ray

�j = [
0, exp

(
i 2π

3 (j − 1)
)∞)

(29)

so that �̃j ∩ �j = {ξj }.
The ‘bricks’ which we use to build up the appropriate integral representations are the

‘inverse’ Fourier–Laplace transforms

ψ̃(j)n (λ) = t

2π i

∫
�̃
(j )

0

exp(−tλξ)ψ̂ (j)
n (ξ) dξ F̃ n(λ) = t

2π i

∫
�̃j

exp(−tλξ)Fn(ξ) dξ. (30)

Functions (30) satisfy the differential equations in λ, x and y in (7) but not the recursion relation
and the differential equation in t because of the appearance of inappropriate off-integral terms
resulting from integration by parts. In more detail:

λψ̃(k)
n (λ) = 1

2π i exp(−tλξ0)ψ̂
(k)
n (ξ0) + appropriate terms (31)

λF̃ n(λ) = 1
2π i exp(−tλξj )

(
F +
n (ξj )− F−

n (ξj )
)

+ appropriate terms

= 1
2π i exp(−tλξj )

(
g
(2)
j − g

(2)
j+1

) 2∑
k=0

g
(1)
k ψ̂

(k)
n (ξj ) + appropriate terms. (32)

In the second line of (32), we have used jump condition (20) and definition (16). Combining
(31) at ξ0 = ξj and (32), it is possible to eliminate the off-integral terms and find such a
combination F̃ (j)n (λ) of ψ̃(k)

n (λ) and F̃ n(λ) which satisfies the system (7),

F̃ (j)n (λ) = F̃ n(λ)− (
g
(2)
j − g

(2)
j+1

) 2∑
k=0

g
(1)
k ψ̃

(k)
n (λ). (33)

Identity
∑

j ψ̂
(j)(ξ) ≡ 0 entails that

∑
j ψ̃

(j)(λ) also satisfies (7). Thus it is possible
to eliminate one of the values ψ̃(k)

n (λ) from (33). For technical reasons, we prefer to use the
latter opportunity and introduce the following solutions of (7):

F̃ (0)n (λ) = F̃ n(λ)− (
g
(2)
0 − g

(2)
1

)(
g
(1)
0 − g

(1)
1

)
ψ̃(0)
n (λ)− (

g
(2)
0 − g

(2)
1

)(
g
(1)
2 − g

(1)
1

)
ψ̃(2)n (λ)

F̃ (1)n (λ) = F̃ n(λ)− (
g
(2)
1 − g

(2)
2

)(
g
(1)
1 − g

(1)
0

)
ψ̃(1)
n (λ)− (

g
(2)
1 − g

(2)
2

)(
g
(1)
2 − g

(1)
0

)
ψ̃(2)n (λ)

F̃ (2)n (λ) = F̃ n(λ)− (
g
(2)
2 − g

(2)
0

)(
g
(1)
0 − g

(1)
2

)
ψ̃(0)
n (λ)− (

g
(2)
2 − g

(2)
0

)(
g
(1)
1 − g

(1)
2

)
ψ̃(1)n (λ).

Define 3 × 3 matrix functions

�n(λ) =



ψn(λ) F̃ (0)n (λ) F̃ (1)n (λ)

ψn−1(λ) F̃
(0)
n−1(λ) F̃

(1)
n−1(λ)

ψn−2(λ) F̃
(0)
n−2(λ) F̃

(1)
n−2(λ)


 n � 4. (34)
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The asymptotics at infinity of ψn(λ) is elementary

ψn(λ) = λn

hn
exp

(− 1
3λ

3 − xλ
)
(1 + O(λ−1)). (35)

The asymptotics of F̃ (j)n (λ) can be found using the conventional steepest descent method

F̃ (1)n (λ) = ithn
4π3/2

(tλ)−
n+1

2 − 1
4 exp

(− 2
3 (tλ)

3/2 + y(tλ)1/2
)
(1 + O(λ−1/2)) +

(
g
(2)
1 − g

(2)
2

)

× (
g
(1)
1 − g

(1)
0

)λn
hn

exp
(− 1

3λ
3 − xλ

)
(1 + O(λ−1)) argλ ∈ (− 2π

3 , 0
)

F̃ (1)n (λ) = ithn
4π3/2

(tλ)−
n+1

2 − 1
4 exp

(− 2
3 (tλ)

3/2 + y(tλ)1/2
)
(1 + O(λ−1/2)) +

(
g
(2)
1 − g

(2)
2

)

× (
g
(1)
2 − g

(1)
0

)λn
hn

exp
(− 1

3λ
3 − xλ

)
(1 + O(λ−1)) argλ ∈ (

0, 2π
3

)

F̃ (0)n (λ) = − thn

4π3/2
(−1)n(tλ)−

n+1
2 − 1

4 exp
(

2
3 (tλ)

3/2 − y(tλ)1/2
)
(1 + O(λ−1/2)) +

(
g
(2)
0 − g

(2)
1

)

× (
g
(1)
2 − g

(1)
1

)λn
hn

exp
(− 1

3λ
3 − xλ

)
(1 + O(λ−1)) argλ ∈ (

0, 2π
3

)

F̃ (0)n (λ) = − thn

4π3/2
(−1)n(tλ)−

n+1
2 − 1

4 exp
(

2
3 (tλ)

3/2 − y(tλ)1/2
)
(1 + O(λ−1/2)) +

(
g
(2)
0 − g

(2)
1

)

× (
g
(1)
0 − g

(1)
1

)λn
hn

exp
(− 1

3λ
3 − xλ

)
(1 + O(λ−1)) argλ ∈ (

2π
3 ,

4π
3

)

F̃ (2)n (λ) = − ithn
4π3/2

(tλ)−
n+1

2 − 1
4 exp

(− 2
3 (tλ)

3/2 + y(tλ)1/2
)
(1 + O(λ−1/2)) +

(
g
(2)
2 − g

(2)
0

)

× (
g
(1)
0 − g

(1)
2

)λn
hn

exp
(− 1

3λ
3 − xλ

)
(1 + O(λ−1)) argλ ∈ (

2π
3 ,

4π
3

)

F̃ (2)n (λ) = − ithn
2π3/2

(tλ)−
n+1

2 − 1
4 exp

(− 2
3 (tλ)

3/2 + y(tλ)1/2
)
(1 + O(λ−1/2)) +

(
g
(2)
2 − g

(2)
0

)

× (
g
(1)
1 − g

(1)
2

)λn
hn

exp
(− 1

3λ
3 − xλ

)
(1 + O(λ−1)) argλ ∈ (

4π
3 , 2π

)
.

Using the above asymptotics and the linear constraint for F̃ (j)n ,

F̃ (0)n (λ) + F̃ (1)n (λ) + F̃ (2)n (λ) = gFψn(λ)

gF = g
(2)
0

(
g
(1)
2 − g

(1)
1

)
+ g(2)1

(
g
(1)
1 − g

(1)
0

)
+ g(2)2

(
g
(1)
0 − g

(1)
2

)
(36)

we find the RH problem for our bi-orthogonal polynomials.

Riemann–Hilbert problem 2. Find a piece-wise holomorphic 3 × 3 matrix function�RH
n (λ)

with the following properties:

1. G−1(λ)�RH
n (λ) exp(−�(λ)) → I as λ → ∞ where

G(λ) =




1
hn

thn
4π3/2 (−1)n+1(tλ)−

3
4

ithn
4π3/2 (tλ)

− 3
4

λ−1

hn−1

thn−1

4π3/2 (−1)n(tλ)−
1
4

ithn−1

4π3/2 (tλ)
− 1

4

λ−2

hn−2

thn−2

4π3/2 (−1)n−1(tλ)
1
4

ithn−2

4π3/2 (tλ)
1
4




�(λ) = diag
(− 1

3λ
3 − xλ + n ln λ, 2

3 (tλ)
3/2 − y(tλ)1/2 − n

2 ln(tλ)

− 2
3 (tλ)

3/2 + y(tλ)1/2 − n
2 ln(tλ)

) ;

(37)
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2. Across the rays argλ = 2π
3 (j − 1), j = 1, 2, 3, oriented towards infinity, �RH

n (λ) has the
jumps

�RH+
n (λ) = �RH−

n (λ)Sj argλ = 2π
3 (j − 1) (38)

where plus and minus indicate the limiting values of �RH
n (λ) on the jump contour from

the left and from the right, respectively,

S1 =




1
(
g
(2)
1 − g

(2)
0

)(
g
(1)
2 − g

(1)
1

) (
g
(2)
1 − g

(2)
2

)(
g
(1)
1 − g

(1)
2

)
0 1 0

0 −1 1




S2 =




1
(
g
(2)
0 − g

(2)
1

)(
g
(1)
2 − g

(1)
0

) (
g
(2)
0 − g

(2)
2

)(
g
(1)
2 − g

(1)
0

)
0 1 1

0 0 1




S3 =




1
(
g
(2)
1 − g

(2)
2

)(
g
(1)
1 − g

(1)
0

) (
g
(2)
2 − g

(2)
0

)(
g
(1)
1 − g

(1)
0

)
0 1 0

0 −1 1


 .

Across the ray argλ = −π
3 oriented towards infinity, the jump condition holds

�RH+
n (λ) = �RH−

n (λ)� argλ = −π
3

� =




1 0 0

0 0 −1

0 1 0


 . (39)

The wavefunctions ψn(λ),ψn−1(λ) and ψn−2(λ) are just entries of the first column of
�RH
n (λ).

Remark 2. One can check the validity of the cyclic relation, S1S2S3� = I . It ensures the
continuity of the RH problem above at the origin and reflects the fact that all solutions of an
ODE with polynomial coefficients are entire functions.

5. Discussion

Assuming above the existence of bi-orthogonal polynomials for the cubic potentials, we
constructed the fundamental matrix solutions � , �̂ for equations (11) and (13), and, using
these solutions, formulated matrix Riemann–Hilbert problems (37)–(39) and (22)–(24).

Alternatively, matrix equations (11) and (13) can be studied using the complex WKB
method, see, e.g. [21]. In fact, asymptotic conditions (37) and (22) immediately come from
the leading-order WKB asymptotic solutions to (11) and (13), respectively, while the jump
matrices Sj in (38) and Ŝj in (23) are the special cases of the relevant general Stokes matrices.
Actually, one finds Sj in (38) using the cyclic relation and assuming that the first column of
the matrix solution to (11) has uniform asymptotics as λ → ∞. Similarly, one finds Ŝj in (23)
using the cyclic relation and assuming that the last column of the matrix solution to (13) does
not affect the jumps of the remaining columns. However, the expressions for the nontrivial
entries of the jump matrices in terms of the coefficients g(j)i of (2) cannot be reproduced in
this way.

The results on the Painlevé property and the solvability of the inverse monodromy problem
obtained in [22–24] imply the solvability of the RH problems above for any given coefficients
g
(j)

i and generic values of the deformation parameters x, y, t .
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Uniqueness of these solutions can be obtained in the usual way. For instance, consider
RH problem 2. Introduce the matrix function Y = G−1�RH e−�. It is straightforward that
detY is an entire function of λ. Moreover, det Y ≡ 1 due to the Liouville theorem and
normalization (37). Consider two solutions�RH and �̃RH of RH problem 2 and the respective
functions Y and Ỹ . The ratio Z = Y Ỹ−1 is an entire function of λ, moreoverZ ≡ I due to the
Liouville theorem and normalization (37). Thus �RH ≡ �̃RH. Uniqueness of the solution to
RH problem 1 is similar.

The above discussion of the unique solvability of the RH problems is independent from
the fact of existence of the bi-orthogonal polynomials assumed in sections 3 and 4. Following
[19] and using a determinant representation for the bi-orthogonal polynomials, it is possible
to justify this assumption for arbitrary values of the deformation parameters x, y, t and some
generic values of g(j)i .

We observe another opportunity to make sure that the set of bi-orthogonal polynomials for
any g(j)i and generic x, y, t is not empty. Namely, we conjecture that the solvability of the RH
problems for�RH, �̂RH,�RH, �̂RH leads to the existence of bi-orthogonal polynomials. This
assertion can be obtained as follows. The solution �RH(λ) of RH problem 2 contains in its
first column a polynomial vector. The solution �̂RH(ξ) of RH problem 1 gives rise to a matrix
function �̂(ξ) with the jump property (21). Thus the first two columns of �̂(ξ) are entire
functions, while the last column admits a Cauchy integral representation. Then the prescribed
asymptotics at infinity of the latter yields the orthogonality of a combination of the first two
columns to ξm exp(−W(ξ)) form < n. To complete the proof it is enough to observe that the
first two columns of �̂(ξ) are just Fourier–Laplace transforms of the first column in �RH(λ).

Finally, we note that the RH problems constructed above are useful for the study of
n-large asymptotics of the bi-orthogonal polynomials. The necessary preparatory steps and
anticipated results are announced in [25].
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